This documentation is automatically generated by online-judge-tools/verification-helper
//source: KACTL
ll modpow(ll b, ll e, ll p) {
ll ans = 1;
for(; e; b = b * b % p, e /= 2)
if (e & 1) ans = ans * b % p;
return ans;
}
ll sqrt(ll a, ll p) {
a %= p; if (a < 0) a += p;
if (a == 0) return 0;
//assert(modpow(a, (p-1)/2, p) == 1); // else no solution
if (modpow(a, (p-1)/2, p) != 1) return -1;
if (p % 4 == 3) return modpow(a, (p+1)/4, p);
// a^(n+3)/8 or 2^(n+3)/8 * 2^(n-1)/4 works if p % 8 == 5
ll s = p - 1, n = 2;
int r = 0, m;
while (s % 2 == 0)
++r, s /= 2;
/// find a non-square mod p
while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
ll x = modpow(a, (s + 1) / 2, p);
ll b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r = m) {
ll t = b;
for (m = 0; m < r && t != 1; ++m)
t = t * t % p;
if (m == 0) return x;
ll gs = modpow(g, 1LL << (r - m - 1), p);
g = gs * gs % p;
x = x * gs % p;
b = b * g % p;
}
}
#line 1 "numtheory/sqrtMod.cpp"
//source: KACTL
ll modpow(ll b, ll e, ll p) {
ll ans = 1;
for(; e; b = b * b % p, e /= 2)
if (e & 1) ans = ans * b % p;
return ans;
}
ll sqrt(ll a, ll p) {
a %= p; if (a < 0) a += p;
if (a == 0) return 0;
//assert(modpow(a, (p-1)/2, p) == 1); // else no solution
if (modpow(a, (p-1)/2, p) != 1) return -1;
if (p % 4 == 3) return modpow(a, (p+1)/4, p);
// a^(n+3)/8 or 2^(n+3)/8 * 2^(n-1)/4 works if p % 8 == 5
ll s = p - 1, n = 2;
int r = 0, m;
while (s % 2 == 0)
++r, s /= 2;
/// find a non-square mod p
while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
ll x = modpow(a, (s + 1) / 2, p);
ll b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r = m) {
ll t = b;
for (m = 0; m < r && t != 1; ++m)
t = t * t % p;
if (m == 0) return x;
ll gs = modpow(g, 1LL << (r - m - 1), p);
g = gs * gs % p;
x = x * gs % p;
b = b * g % p;
}
}