CP-templates

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Misuki743/CP-templates

:heavy_check_mark: test/chromatic_number.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/chromatic_number"

#include "../default/t.cpp"
#include "modint/dynamicMontgomeryModInt.cpp"
#include "numtheory/fastFactorize.cpp"
#include "combi/chromaticNumber.cpp"

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  int n, m; cin >> n >> m;
  vector g(n, vector<bool>(n, false));
  for(int i = 0; i < m; i++) {
    int u, v; cin >> u >> v;
    g[u][v] = g[v][u] = true;
  }

  cout << chromatic_number(g) << '\n';

  return 0;
}
#line 1 "test/chromatic_number.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/chromatic_number"

#line 1 "default/t.cpp"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
#include <bit>
#include <compare>
#include <concepts>
#include <numbers>
#include <ranges>
#include <span>

#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)

#define clock chrono::steady_clock::now().time_since_epoch().count()

using namespace std;

template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2> pr) {
  return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
  for(size_t i = 0; T x : arr) {
    os << x;
    if (++i != N) os << ' ';
  }
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
  for(size_t i = 0; T x : vec) {
    os << x;
    if (++i != size(vec)) os << ' ';
  }
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
  for(size_t i = 0; T x : s) {
    os << x;
    if (++i != size(s)) os << ' ';
  }
  return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const map<T1, T2> &m) {
  for(size_t i = 0; pair<T1, T2> x : m) {
    os << x;
    if (++i != size(m)) os << ' ';
  }
  return os;
}

#ifdef DEBUG
#define dbg(...) cerr << '(', _do(#__VA_ARGS__), cerr << ") = ", _do2(__VA_ARGS__)
template<typename T> void _do(T &&x) { cerr << x; }
template<typename T, typename ...S> void _do(T &&x, S&&...y) { cerr << x << ", "; _do(y...); }
template<typename T> void _do2(T &&x) { cerr << x << endl; }
template<typename T, typename ...S> void _do2(T &&x, S&&...y) { cerr << x << ", "; _do2(y...); }
#else
#define dbg(...)
#endif

using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;

template<typename T> using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T> using max_heap = priority_queue<T>;

template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP = plus<T>>
void pSum(rng &v) {
  if (!v.empty())
    for(T p = v[0]; T &x : v | views::drop(1))
      x = p = OP()(p, x);
}
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP>
void pSum(rng &v, OP op) {
  if (!v.empty())
    for(T p = v[0]; T &x : v | views::drop(1))
      x = p = op(p, x);
}

template<ranges::forward_range rng>
void Unique(rng &v) {
  ranges::sort(v);
  v.resize(unique(v.begin(), v.end()) - v.begin());
}

template<ranges::random_access_range rng>
rng invPerm(rng p) {
  rng ret = p;
  for(int i = 0; i < ssize(p); i++)
    ret[p[i]] = i;
  return ret;
}

template<ranges::random_access_range rng, ranges::random_access_range rng2>
rng Permute(rng v, rng2 p) {
  rng ret = v;
  for(int i = 0; i < ssize(p); i++)
    ret[p[i]] = v[i];
  return ret;
}

template<bool directed>
vector<vector<int>> readGraph(int n, int m, int base) {
  vector<vector<int>> g(n);
  for(int i = 0; i < m; i++) {
    int u, v; cin >> u >> v;
    u -= base, v -= base;
    g[u].emplace_back(v);
    if constexpr (!directed)
      g[v].emplace_back(u);
  }
  return g;
}

template<class T>
void setBit(T &msk, int bit, bool x) {
  msk = (msk & ~(T(1) << bit)) | (T(x) << bit);
}
template<class T> void flipBit(T &msk, int bit) { msk ^= T(1) << bit; }
template<class T> bool getBit(T msk, int bit) { return msk >> bit & T(1); }

template<class T>
T floorDiv(T a, T b) {
  if (b < 0) a *= -1, b *= -1;
  return a >= 0 ? a / b : (a - b + 1) / b;
}
template<class T>
T ceilDiv(T a, T b) {
  if (b < 0) a *= -1, b *= -1;
  return a >= 0 ? (a + b - 1) / b : a / b;
}

template<class T> bool chmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<class T> bool chmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
#line 1 "modint/dynamicMontgomeryModInt.cpp"
//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be an odd prime less than 2^30.

template<uint32_t ver>
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static u32 mod, n2, r;

  static constexpr u32 get_r() {
    u32 res = 1, base = mod;
    for(i32 i = 0; i < 31; i++)
      res *= base, base *= base;
    return -res;
  }

  static constexpr u32 get_mod() {
    return mod;
  }

  static void set_mod(u32 _mod) {
    mod = _mod;
    n2 = -u64(mod) % mod;
    r = get_r();
  }

  u32 a;

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * r) * mod) >> 32;
  }

  static u32 transform(const u64 &b) {
    return reduce(u64(b) * n2);
  }

  MontgomeryModInt() : a(0) {}
  MontgomeryModInt(const int64_t &b) 
    : a(transform(b % mod + mod)) {}

  mint pow(u64 k) const {
    mint res(1), base(*this);
    while(k) {
      if (k & 1) 
        res *= base;
      base *= base, k >>= 1;
    }
    return res;
  }

  mint inverse() const { return (*this).pow(mod - 2); }

  u32 get() const {
    u32 res = reduce(a);
    return res >= mod ? res - mod : res;
  }

  mint& operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint& operator/=(const mint &b) {
    a = reduce(u64(a) * b.inverse().a);
    return *this;
  }

  mint operator-() { return mint() - mint(*this); }
  bool operator==(mint b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(mint b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }

  friend mint operator+(mint c, mint d) { return c += d; }
  friend mint operator-(mint c, mint d) { return c -= d; }
  friend mint operator*(mint c, mint d) { return c *= d; }
  friend mint operator/(mint c, mint d) { return c /= d; }

  friend ostream& operator<<(ostream& os, const mint& b) {
    return os << b.get();
  }
  friend istream& operator>>(istream& is, mint& b) {
    int64_t val;
    is >> val;
    b = mint(val);
    return is;
  }
};

using mint = MontgomeryModInt<0>;
template<> uint32_t mint::mod = 0;
template<> uint32_t mint::n2 = 0;
template<> uint32_t mint::r = 0;
#line 1 "numtheory/fastFactorize.cpp"
//source: KACTL(https://github.com/kth-competitive-programming/kactl)

ull modmul(ull a, ull b, ull M) {
	ll ret = a * b - M * ull(1.L / M * a * b);
	return ret + M * (ret < 0) - M * (ret >= (ll)M);
}

ull modpow(ull b, ull e, ull mod) {
	ull ans = 1;
	for (; e; b = modmul(b, b, mod), e /= 2)
		if (e & 1) ans = modmul(ans, b, mod);
	return ans;
}

bool isPrime(ull n) {
	if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
	ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
	    s = __builtin_ctzll(n-1), d = n >> s;
	for (ull a : A) {   // ^ count trailing zeroes
		ull p = modpow(a%n, d, n), i = s;
		while (p != 1 && p != n - 1 && a % n && i--)
			p = modmul(p, p, n);
		if (p != n-1 && i != s) return 0;
	}
	return 1;
}

ull pollard(ull n) {
  static mt19937_64 rng(clock);
  uniform_int_distribution<ull> unif(0, n - 1);
  ull c = 1;
	auto f = [n, &c](ull x) { return modmul(x, x, n) + c % n; };
	ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
	while (t++ % 40 || __gcd(prd, n) == 1) {
		if (x == y) c = unif(rng), x = ++i, y = f(x);
		if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
		x = f(x), y = f(f(y));
	}
	return __gcd(prd, n);
}

vector<ull> factor(ull n) {
	if (n == 1) return {};
	if (isPrime(n)) return {n};
	ull x = pollard(n);
	auto l = factor(x), r = factor(n / x);
	l.insert(l.end(), r.begin(), r.end());
	return l;
}
#line 1 "combi/chromaticNumber.cpp"
//#include "modint/dynamicMontgomeryModInt.cpp"
//#include "numtheory/fastFactorize.cpp"

template<> uint32_t MontgomeryModInt<123>::mod = 0;
template<> uint32_t MontgomeryModInt<123>::n2 = 0;
template<> uint32_t MontgomeryModInt<123>::r = 0;
int chromatic_number(vector<vector<bool>> g) {
  const int n = ssize(g);

  mt19937 rng(clock);
  uniform_int_distribution<int> unif(1 << 29, 1 << 30);
  int p = 4;
  while(!isPrime(p)) p = unif(rng);
  using Mint = MontgomeryModInt<123>;
  Mint::set_mod(p);

  vector<Mint> I(1 << n);
  I[0] = 1;
  for(unsigned msk = 1; msk < (1 << n); msk++) {
    int v = countr_zero(bit_floor(msk));
    I[msk] = I[msk ^ (1 << v)];
    unsigned msk2 = msk ^ (1 << v);
    for(int x = 0; x < n; x++)
      if (g[v][x] and (msk2 >> x & 1))
        msk2 ^= 1 << x;
    I[msk] += I[msk2];
  }

  auto check = [&](int c) {
    if (c == n) return true;
    Mint cnt = 0;
    for(unsigned msk = 0; msk < (1 << n); msk++)
      cnt += I[msk].pow(c) * (popcount(msk ^ ((1 << n) - 1)) % 2 == 1 ? -1 : 1);
    return cnt != 0;
  };

  int c = 1;
  while(!check(c)) c++;

  return c;
}
#line 7 "test/chromatic_number.test.cpp"

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  int n, m; cin >> n >> m;
  vector g(n, vector<bool>(n, false));
  for(int i = 0; i < m; i++) {
    int u, v; cin >> u >> v;
    g[u][v] = g[v][u] = true;
  }

  cout << chromatic_number(g) << '\n';

  return 0;
}
Back to top page