This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_det"
#include "../default/t.cpp"
#include "../modint/MontgomeryModInt.cpp"
#include "../linalg/matrixMint.cpp"
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
int n; cin >> n;
matrix<mint> M(n, n);
cin >> M;
cout << M.det() << '\n';
return 0;
}
#line 1 "test/determinant_of_matrix.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_det"
#line 1 "default/t.cpp"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
#include <bit>
#include <compare>
#include <concepts>
#include <numbers>
#include <ranges>
#include <span>
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)
#define clock chrono::steady_clock::now().time_since_epoch().count()
using namespace std;
template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2> pr) {
return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
for(size_t i = 0; T x : arr) {
os << x;
if (++i != N) os << ' ';
}
return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
for(size_t i = 0; T x : vec) {
os << x;
if (++i != size(vec)) os << ' ';
}
return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
for(size_t i = 0; T x : s) {
os << x;
if (++i != size(s)) os << ' ';
}
return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const map<T1, T2> &m) {
for(size_t i = 0; pair<T1, T2> x : m) {
os << x;
if (++i != size(m)) os << ' ';
}
return os;
}
#ifdef DEBUG
#define dbg(...) cerr << '(', _do(#__VA_ARGS__), cerr << ") = ", _do2(__VA_ARGS__)
template<typename T> void _do(T &&x) { cerr << x; }
template<typename T, typename ...S> void _do(T &&x, S&&...y) { cerr << x << ", "; _do(y...); }
template<typename T> void _do2(T &&x) { cerr << x << endl; }
template<typename T, typename ...S> void _do2(T &&x, S&&...y) { cerr << x << ", "; _do2(y...); }
#else
#define dbg(...)
#endif
using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template<typename T> using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T> using max_heap = priority_queue<T>;
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP = plus<T>>
void pSum(rng &v) {
if (!v.empty())
for(T p = v[0]; T &x : v | views::drop(1))
x = p = OP()(p, x);
}
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP>
void pSum(rng &v, OP op) {
if (!v.empty())
for(T p = v[0]; T &x : v | views::drop(1))
x = p = op(p, x);
}
template<ranges::forward_range rng>
void Unique(rng &v) {
ranges::sort(v);
v.resize(unique(v.begin(), v.end()) - v.begin());
}
template<ranges::random_access_range rng>
rng invPerm(rng p) {
rng ret = p;
for(int i = 0; i < ssize(p); i++)
ret[p[i]] = i;
return ret;
}
template<ranges::random_access_range rng, ranges::random_access_range rng2>
rng Permute(rng v, rng2 p) {
rng ret = v;
for(int i = 0; i < ssize(p); i++)
ret[p[i]] = v[i];
return ret;
}
template<bool directed>
vector<vector<int>> readGraph(int n, int m, int base) {
vector<vector<int>> g(n);
for(int i = 0; i < m; i++) {
int u, v; cin >> u >> v;
u -= base, v -= base;
g[u].emplace_back(v);
if constexpr (!directed)
g[v].emplace_back(u);
}
return g;
}
template<class T>
void setBit(T &msk, int bit, bool x) {
msk = (msk & ~(T(1) << bit)) | (T(x) << bit);
}
template<class T> void flipBit(T &msk, int bit) { msk ^= T(1) << bit; }
template<class T> bool getBit(T msk, int bit) { return msk >> bit & T(1); }
template<class T>
T floorDiv(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? a / b : (a - b + 1) / b;
}
template<class T>
T ceilDiv(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? (a + b - 1) / b : a / b;
}
template<class T> bool chmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<class T> bool chmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
#line 1 "modint/MontgomeryModInt.cpp"
//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be an odd prime less than 2^30.
template<uint32_t mod>
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 res = 1, base = mod;
for(i32 i = 0; i < 31; i++)
res *= base, base *= base;
return -res;
}
static constexpr u32 get_mod() {
return mod;
}
static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
static constexpr u32 r = get_r(); //-P^{-1} % 2^32
u32 a;
static u32 reduce(const u64 &b) {
return (b + u64(u32(b) * r) * mod) >> 32;
}
static u32 transform(const u64 &b) {
return reduce(u64(b) * n2);
}
MontgomeryModInt() : a(0) {}
MontgomeryModInt(const int64_t &b)
: a(transform(b % mod + mod)) {}
mint pow(u64 k) const {
mint res(1), base(*this);
while(k) {
if (k & 1)
res *= base;
base *= base, k >>= 1;
}
return res;
}
mint inverse() const { return (*this).pow(mod - 2); }
u32 get() const {
u32 res = reduce(a);
return res >= mod ? res - mod : res;
}
mint& operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
mint& operator/=(const mint &b) {
a = reduce(u64(a) * b.inverse().a);
return *this;
}
mint operator-() { return mint() - mint(*this); }
bool operator==(mint b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(mint b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
friend mint operator+(mint c, mint d) { return c += d; }
friend mint operator-(mint c, mint d) { return c -= d; }
friend mint operator*(mint c, mint d) { return c *= d; }
friend mint operator/(mint c, mint d) { return c /= d; }
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t val;
is >> val;
b = mint(val);
return is;
}
};
using mint = MontgomeryModInt<998244353>;
#line 1 "linalg/matrixMint.cpp"
template<class Mint>
struct matrix : vector<vector<Mint>> {
matrix(int n, int m) : vector<vector<Mint>>(n, vector<Mint>(m, 0)) {}
matrix(int n) : vector<vector<Mint>>(n, vector<Mint>(n, 0)) {}
int n() const { return ssize(*this); }
int m() const { return n() == 0 ? 0 : ssize((*this)[0]); }
static matrix I(int n) {
auto res = matrix(n, n);
for(int i = 0; i < n; i++)
res[i][i] = 1;
return res;
}
matrix& operator+=(const matrix &b) {
assert(n() == b.n());
assert(m() == b.m());
for(int i = 0; i < n(); i++)
for(int j = 0; j < m(); j++)
(*this)[i][j] += b[i][j];
return *this;
}
matrix& operator-=(const matrix &b) {
assert(n() == b.n());
assert(m() == b.m());
for(int i = 0; i < n(); i++)
for(int j = 0; j < m(); j++)
(*this)[i][j] -= b[i][j];
return *this;
}
matrix& operator*=(const matrix &b) {
assert(m() == b.n());
auto res = matrix(n(), b.m());
for(int i = 0; i < n(); i++)
for(int k = 0; k < m(); k++)
for(int j = 0; j < b.m(); j++)
res[i][j] += (*this)[i][k] * b[k][j];
this -> swap(res);
return *this;
}
matrix pow(ll k) const {
assert(n() == m());
auto res = I(n()), base = *this;
while(k) {
if (k & 1) res *= base;
base *= base, k >>= 1;
}
return res;
}
tuple<matrix, vector<int>, int> eliminate() {
int sgn = 1;
matrix M = *this;
vector<int> pivot_row;
for(int row = 0, col = 0; row < n() and col < m(); col++) {
int p_row = -1;
for(int i = row; i < n() and p_row == -1; i++)
if (M[i][col] != 0)
p_row = i;
if (p_row == -1) continue;
pivot_row.emplace_back(row);
if (row != p_row) {
for(int j = col; j < m(); j++)
swap(M[row][j], M[p_row][j]);
sgn *= -1;
}
for(int i = 0; i < n(); i++) {
if (i == row or M[i][col] == 0) continue;
Mint s = M[i][col] / M[row][col];
for(int j = col; j < m(); j++)
M[i][j] -= M[row][j] * s;
}
row++;
}
return {M, pivot_row, sgn};
}
Mint det() {
assert(n() == m());
auto [M, pr, sgn] = eliminate();
if (ssize(pr) != n()) {
return Mint(0);
} else {
Mint d = sgn;
for(int i = 0; i < n(); i++)
d *= M[i][i];
return d;
}
}
int rank() {
return get<1>(eliminate()).size();
}
pair<bool, matrix> inv() {
assert(n() == m());
matrix M(n(), 2 * n());
for(int i = 0; i < n(); i++) {
for(int j = 0; j < n(); j++)
M[i][j] = (*this)[i][j];
M[i][n() + i] = 1;
}
matrix tmp = get<0>(M.eliminate());
matrix MI(n(), n());
for(int i = 0; i < n(); i++) {
if (tmp[i][i] == 0) return {false, matrix(0, 0)};
Mint r = tmp[i][i].inverse();
for(int j = 0; j < n(); j++)
MI[i][j] = tmp[i][j + n()] * r;
}
return {true, MI};
}
pair<vector<Mint>, matrix> solve_linear(vector<Mint> b) {
assert(n() == ssize(b));
matrix M(n(), m() + 1);
for(int i = 0; i < n(); i++) {
for(int j = 0; j < m(); j++)
M[i][j] = (*this)[i][j];
M[i][m()] = b[i];
}
auto [N, pr, _] = M.eliminate();
vector<Mint> x(m());
vector<int> where(m(), -1), inv_where(m(), -1);
for(int row : pr) {
int col = 0;
while(N[row][col] == 0) col++;
if (col < m())
where[col] = row, inv_where[row] = col;
}
for(int i = 0; i < m(); i++)
if (where[i] != -1)
x[i] = N[where[i]][m()] / N[where[i]][i];
for(int i = 0; i < n(); i++) {
Mint s = -N[i][m()];
for(int j = 0; j < m(); j++)
s += x[j] * N[i][j];
if (s != Mint(0))
return {vector<Mint>(), matrix(0)};
}
matrix basis(m() - ssize(pr), m());
for(int col = 0, last_row = 0, k = 0; col < m(); col++) {
if (where[col] != -1) {
last_row = where[col];
} else {
basis[k][col] = 1;
for(int i = 0; i <= last_row; i++)
basis[k][inv_where[i]] = -N[i][col] / N[i][inv_where[i]];
k++;
}
}
return {x, basis};
}
matrix operator-() { return matrix(n(), m()) - (*this); }
friend matrix operator+(matrix a, matrix b) { return a += b; }
friend matrix operator-(matrix a, matrix b) { return a -= b; }
friend matrix operator*(matrix a, matrix b) { return a *= b; }
friend ostream& operator<<(ostream& os, const matrix& b) {
for(int i = 0; i < b.n(); i++) {
os << '\n';
for(int j = 0; j < b.m(); j++)
os << b[i][j] << ' ';
}
return os;
}
friend istream& operator>>(istream& is, matrix& b) {
for(int i = 0; i < b.n(); i++)
for(int j = 0; j < b.m(); j++)
is >> b[i][j];
return is;
}
};
#line 6 "test/determinant_of_matrix.test.cpp"
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
int n; cin >> n;
matrix<mint> M(n, n);
cin >> M;
cout << M.det() << '\n';
return 0;
}