This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/gcd_convolution"
#include "../default/t.cpp"
#include "../modint/MontgomeryModInt.cpp"
#include "../numtheory/linear_sieve.cpp"
#include "../numtheory/zeta_mobius_on_divisibility_lattice.cpp"
#include "../numtheory/gcd_convolution.cpp"
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
linear_sieve<1'000'001> ls;
int n; cin >> n;
vector<mint> a(n), b(n);
for(mint &x : a) cin >> x;
for(mint &x : b) cin >> x;
a.insert(a.begin(), mint(0));
b.insert(b.begin(), mint(0));
auto c = gcd_convolution(ls, a, b);
c.erase(c.begin());
cout << c << '\n';
return 0;
}#line 1 "test/gcd_convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/gcd_convolution"
#line 1 "default/t.cpp"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
#include <bit>
#include <compare>
#include <concepts>
#include <numbers>
#include <ranges>
#include <span>
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)
#define pb push_back
#define eb emplace_back
#define clock chrono::steady_clock::now().time_since_epoch().count()
using namespace std;
template<size_t I = 0, typename... args>
ostream& print_tuple(ostream& os, const tuple<args...> tu) {
os << get<I>(tu);
if constexpr (I + 1 != sizeof...(args)) {
os << ' ';
print_tuple<I + 1>(os, tu);
}
return os;
}
template<typename... args>
ostream& operator<<(ostream& os, const tuple<args...> tu) {
return print_tuple(os, tu);
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2> pr) {
return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
for(size_t i = 0; T x : arr) {
os << x;
if (++i != N) os << ' ';
}
return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
for(size_t i = 0; T x : vec) {
os << x;
if (++i != size(vec)) os << ' ';
}
return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
for(size_t i = 0; T x : s) {
os << x;
if (++i != size(s)) os << ' ';
}
return os;
}
template<class T>
ostream& operator<<(ostream& os, const multiset<T> &s) {
for(size_t i = 0; T x : s) {
os << x;
if (++i != size(s)) os << ' ';
}
return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const map<T1, T2> &m) {
for(size_t i = 0; pair<T1, T2> x : m) {
os << x.first << " : " << x.second;
if (++i != size(m)) os << ", ";
}
return os;
}
#ifdef DEBUG
#define dbg(...) cerr << '(', _do(#__VA_ARGS__), cerr << ") = ", _do2(__VA_ARGS__)
template<typename T> void _do(T &&x) { cerr << x; }
template<typename T, typename ...S> void _do(T &&x, S&&...y) { cerr << x << ", "; _do(y...); }
template<typename T> void _do2(T &&x) { cerr << x << endl; }
template<typename T, typename ...S> void _do2(T &&x, S&&...y) { cerr << x << ", "; _do2(y...); }
#else
#define dbg(...)
#endif
using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template<typename T> using vc = vector<T>;
template<typename T> using vvc = vc<vc<T>>;
template<typename T> using vvvc = vc<vvc<T>>;
using vi = vc<int>;
using vll = vc<ll>;
using vvi = vvc<int>;
using vvll = vvc<ll>;
template<typename T> using min_heap = priority_queue<T, vc<T>, greater<T>>;
template<typename T> using max_heap = priority_queue<T>;
template<typename R, typename F, typename... Args>
concept R_invocable = requires(F&& f, Args&&... args) {
{ std::invoke(std::forward<F>(f), std::forward<Args>(args)...) } -> std::same_as<R>;
};
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, typename F>
requires R_invocable<T, F, T, T>
void pSum(rng &&v, F f) {
if (!v.empty())
for(T p = *v.begin(); T &x : v | views::drop(1))
x = p = f(p, x);
}
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>>
void pSum(rng &&v) {
if (!v.empty())
for(T p = *v.begin(); T &x : v | views::drop(1))
x = p = p + x;
}
template<ranges::forward_range rng>
void Unique(rng &v) {
ranges::sort(v);
v.resize(unique(v.begin(), v.end()) - v.begin());
}
template<ranges::random_access_range rng>
rng invPerm(rng p) {
rng ret = p;
for(int i = 0; i < ssize(p); i++)
ret[p[i]] = i;
return ret;
}
template<ranges::random_access_range rng>
vi argSort(rng p) {
vi id(size(p));
iota(id.begin(), id.end(), 0);
ranges::sort(id, {}, [&](int i) { return pair(p[i], i); });
return id;
}
template<ranges::random_access_range rng, class T = ranges::range_value_t<rng>, typename F>
requires invocable<F, T&>
vi argSort(rng p, F proj) {
vi id(size(p));
iota(id.begin(), id.end(), 0);
ranges::sort(id, {}, [&](int i) { return pair(proj(p[i]), i); });
return id;
}
template<bool directed>
vvi read_graph(int n, int m, int base) {
vvi g(n);
for(int i = 0; i < m; i++) {
int u, v; cin >> u >> v;
u -= base, v -= base;
g[u].emplace_back(v);
if constexpr (!directed)
g[v].emplace_back(u);
}
return g;
}
template<bool directed>
vvi adjacency_list(int n, vc<pii> e, int base) {
vvi g(n);
for(auto [u, v] : e) {
u -= base, v -= base;
g[u].emplace_back(v);
if constexpr (!directed)
g[v].emplace_back(u);
}
return g;
}
template<class T>
void setBit(T &msk, int bit, bool x) { (msk &= ~(T(1) << bit)) |= T(x) << bit; }
template<class T> void onBit(T &msk, int bit) { setBit(msk, bit, true); }
template<class T> void offBit(T &msk, int bit) { setBit(msk, bit, false); }
template<class T> void flipBit(T &msk, int bit) { msk ^= T(1) << bit; }
template<class T> bool getBit(T msk, int bit) { return msk >> bit & T(1); }
template<class T>
T floorDiv(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? a / b : (a - b + 1) / b;
}
template<class T>
T ceilDiv(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? (a + b - 1) / b : a / b;
}
template<class T> bool chmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<class T> bool chmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
#line 1 "modint/MontgomeryModInt.cpp"
//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be an odd prime less than 2^30.
template<uint32_t mod>
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 res = 1, base = mod;
for(i32 i = 0; i < 31; i++)
res *= base, base *= base;
return -res;
}
static constexpr u32 get_mod() {
return mod;
}
static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
static constexpr u32 r = get_r(); //-P^{-1} % 2^32
u32 a;
static u32 reduce(const u64 &b) {
return (b + u64(u32(b) * r) * mod) >> 32;
}
static u32 transform(const u64 &b) {
return reduce(u64(b) * n2);
}
MontgomeryModInt() : a(0) {}
MontgomeryModInt(const int64_t &b)
: a(transform(b % mod + mod)) {}
mint pow(u64 k) const {
mint res(1), base(*this);
while(k) {
if (k & 1)
res *= base;
base *= base, k >>= 1;
}
return res;
}
mint inverse() const { return (*this).pow(mod - 2); }
u32 get() const {
u32 res = reduce(a);
return res >= mod ? res - mod : res;
}
mint& operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
mint& operator/=(const mint &b) {
a = reduce(u64(a) * b.inverse().a);
return *this;
}
mint operator-() { return mint() - mint(*this); }
bool operator==(mint b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(mint b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
friend mint operator+(mint c, mint d) { return c += d; }
friend mint operator-(mint c, mint d) { return c -= d; }
friend mint operator*(mint c, mint d) { return c *= d; }
friend mint operator/(mint c, mint d) { return c /= d; }
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t val;
is >> val;
b = mint(val);
return is;
}
};
using mint = MontgomeryModInt<998244353>;
#line 1 "numtheory/linear_sieve.cpp"
template<int32_t C>
struct linear_sieve {
array<int, C> mpf = {};
vector<int> prime;
linear_sieve() {
if (C > 2)
iota(mpf.begin() + 2, mpf.end(), 2);
for(int i = 2; i < C; i++) {
if (mpf[i] == i)
prime.emplace_back(i);
for(int64_t p : prime) {
if (p > mpf[i] or p * i >= C)
break;
mpf[p * i] = p;
}
}
}
vector<pair<int, int>> prime_factorize(int x) {
vector<pair<int, int>> r;
while(mpf[x]) {
r.emplace_back(mpf[x], 0);
while(x % r.back().first == 0)
x /= r.back().first, r.back().second++;
}
return r;
}
vector<int> prime_factor_enumerate(int x) {
vector<int> r;
while(mpf[x]) {
r.emplace_back(mpf[x]);
while(x % r.back() == 0)
x /= r.back();
}
return r;
}
vector<int> divisor_enumerate(int x, bool sorted = true) {
vector<int> divisor = {1};
for(auto [p, f] : prime_factorize(x)) {
vector<int> nxt;
nxt.reserve(ssize(divisor) * (f + 1));
for(int64_t i = 0, q = 1; i <= f; i++, q *= p)
for(int d : divisor)
nxt.emplace_back(d * q);
divisor.swap(nxt);
}
if (sorted)
ranges::sort(divisor);
return divisor;
}
};
#line 1 "numtheory/zeta_mobius_on_divisibility_lattice.cpp"
//#include "numtheory/linear_sieve"
template<class T, int32_t C>
vector<T> zeta_transform_on_divisor(linear_sieve<C> &ls, vector<T> f) {
assert(ssize(f) <= C);
for(int64_t p : ls.prime) {
if (p >= ssize(f)) break;
for(int i = 1; i * p < ssize(f); i++)
f[i * p] += f[i];
}
return f;
}
template<class T, int32_t C>
vector<T> mobius_transform_on_divisor(linear_sieve<C> &ls, vector<T> f) {
assert(ssize(f) <= C);
for(int64_t p : ls.prime) {
if (p >= ssize(f)) break;
for(int i = (ssize(f) - 1) / p; i > 0; i--)
f[i * p] -= f[i];
}
return f;
}
template<class T, int32_t C>
vector<T> zeta_transform_on_multiple(linear_sieve<C> &ls, vector<T> f) {
assert(ssize(f) <= C);
for(int64_t p : ls.prime) {
if (p >= ssize(f)) break;
for(int i = (ssize(f) - 1) / p; i > 0; i--)
f[i] += f[i * p];
}
return f;
}
template<class T, int32_t C>
vector<T> mobius_transform_on_multiple(linear_sieve<C> &ls, vector<T> f) {
assert(ssize(f) <= C);
for(int64_t p : ls.prime) {
if (p >= ssize(f)) break;
for(int i = 1; i * p < ssize(f); i++)
f[i] -= f[i * p];
}
return f;
}
#line 1 "numtheory/gcd_convolution.cpp"
//#include "numtheory/linear_sieve.cpp"
//#include "numtheory/zeta_mobius_on_divisibility_lattice.cpp"
template<class T, int32_t C>
vector<T> gcd_convolution(linear_sieve<C> &ls, vector<T> a, vector<T> b) {
assert(ssize(a) == ssize(b));
a = zeta_transform_on_multiple(ls, a);
b = zeta_transform_on_multiple(ls, b);
for(int i = 0; i < ssize(a); i++)
a[i] *= b[i];
return mobius_transform_on_multiple(ls, a);
}
#line 8 "test/gcd_convolution.test.cpp"
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
linear_sieve<1'000'001> ls;
int n; cin >> n;
vector<mint> a(n), b(n);
for(mint &x : a) cin >> x;
for(mint &x : b) cin >> x;
a.insert(a.begin(), mint(0));
b.insert(b.begin(), mint(0));
auto c = gcd_convolution(ls, a, b);
c.erase(c.begin());
cout << c << '\n';
return 0;
}