CP-templates

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Misuki743/CP-templates

:heavy_check_mark: test/static_convex_hull.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/static_convex_hull"

#include "../default/t.cpp"
#include "../default/ttt.cpp"
#include "../geometry/point.cpp"
#include "../geometry/convex_hull.cpp"

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  int t; cin >> t;
  while(t--) {
    int n; cin >> n;
    vector<P> pt(n);
    for(auto &[x, y] : pt) cin >> x >> y;
    
    auto hull = convexHull(pt);
    cout << ssize(hull) << '\n';
    for(auto [x, y] : hull) cout << x << ' ' << y << '\n';
  }

  return 0;
}
#line 1 "test/static_convex_hull.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/static_convex_hull"

#line 1 "default/t.cpp"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
#include <bit>
#include <compare>
#include <concepts>
#include <numbers>
#include <ranges>
#include <span>

#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)

#define clock chrono::steady_clock::now().time_since_epoch().count()

using namespace std;

template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2> pr) {
  return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
  for(size_t i = 0; T x : arr) {
    os << x;
    if (++i != N) os << ' ';
  }
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
  for(size_t i = 0; T x : vec) {
    os << x;
    if (++i != size(vec)) os << ' ';
  }
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
  for(size_t i = 0; T x : s) {
    os << x;
    if (++i != size(s)) os << ' ';
  }
  return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const map<T1, T2> &m) {
  for(size_t i = 0; pair<T1, T2> x : m) {
    os << x;
    if (++i != size(m)) os << ' ';
  }
  return os;
}

#ifdef DEBUG
#define dbg(...) cerr << '(', _do(#__VA_ARGS__), cerr << ") = ", _do2(__VA_ARGS__)
template<typename T> void _do(T &&x) { cerr << x; }
template<typename T, typename ...S> void _do(T &&x, S&&...y) { cerr << x << ", "; _do(y...); }
template<typename T> void _do2(T &&x) { cerr << x << endl; }
template<typename T, typename ...S> void _do2(T &&x, S&&...y) { cerr << x << ", "; _do2(y...); }
#else
#define dbg(...)
#endif

using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;

template<typename T> using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T> using max_heap = priority_queue<T>;

template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP = plus<T>>
void pSum(rng &v) {
  if (!v.empty())
    for(T p = v[0]; T &x : v | views::drop(1))
      x = p = OP()(p, x);
}
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP>
void pSum(rng &v, OP op) {
  if (!v.empty())
    for(T p = v[0]; T &x : v | views::drop(1))
      x = p = op(p, x);
}

template<ranges::forward_range rng>
void Unique(rng &v) {
  ranges::sort(v);
  v.resize(unique(v.begin(), v.end()) - v.begin());
}

template<ranges::random_access_range rng>
rng invPerm(rng p) {
  rng ret = p;
  for(int i = 0; i < ssize(p); i++)
    ret[p[i]] = i;
  return ret;
}

template<ranges::random_access_range rng, ranges::random_access_range rng2>
rng Permute(rng v, rng2 p) {
  rng ret = v;
  for(int i = 0; i < ssize(p); i++)
    ret[p[i]] = v[i];
  return ret;
}

template<bool directed>
vector<vector<int>> readGraph(int n, int m, int base) {
  vector<vector<int>> g(n);
  for(int i = 0; i < m; i++) {
    int u, v; cin >> u >> v;
    u -= base, v -= base;
    g[u].emplace_back(v);
    if constexpr (!directed)
      g[v].emplace_back(u);
  }
  return g;
}

template<class T>
void setBit(T &msk, int bit, bool x) {
  msk = (msk & ~(T(1) << bit)) | (T(x) << bit);
}
template<class T> void flipBit(T &msk, int bit) { msk ^= T(1) << bit; }
template<class T> bool getBit(T msk, int bit) { return msk >> bit & T(1); }

template<class T>
T floorDiv(T a, T b) {
  if (b < 0) a *= -1, b *= -1;
  return a >= 0 ? a / b : (a - b + 1) / b;
}
template<class T>
T ceilDiv(T a, T b) {
  if (b < 0) a *= -1, b *= -1;
  return a >= 0 ? (a + b - 1) / b : a / b;
}

template<class T> bool chmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<class T> bool chmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
#line 1 "default/ttt.cpp"
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
#line 1 "geometry/point.cpp"
//source: KACTL
/**
 * Author: Ulf Lundstrom
 * Date: 2009-02-26
 * License: CC0
 * Source: My head with inspiration from tinyKACTL
 * Description: Class to handle points in the plane.
 *  T can be e.g. double or long long. (Avoid int.)
 * Status: Works fine, used a lot
 */

template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
  typedef Point P;
  T x, y;
  explicit Point(T x=0, T y=0) : x(x), y(y) {}
  bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate(double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {
    return os << "(" << p.x << "," << p.y << ")"; }
};
#line 1 "geometry/convex_hull.cpp"
//soucre: KACTL
//Returns a vector of the points of the convex hull in counter-clockwise order.
typedef Point<ll> P;
vector<P> convexHull(vector<P> pts) {
  if (sz(pts) <= 1) return pts;
  sort(all(pts));
  vector<P> h(sz(pts)+1);
  int s = 0, t = 0;
  for (int it = 2; it--; s = --t, reverse(all(pts)))
    for (P p : pts) {
      while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--;
      h[t++] = p;
    }
  return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
}
#line 7 "test/static_convex_hull.test.cpp"

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  int t; cin >> t;
  while(t--) {
    int n; cin >> n;
    vector<P> pt(n);
    for(auto &[x, y] : pt) cin >> x >> y;
    
    auto hull = convexHull(pt);
    cout << ssize(hull) << '\n';
    for(auto [x, y] : hull) cout << x << ' ' << y << '\n';
  }

  return 0;
}
Back to top page