CP-templates

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Misuki743/CP-templates

:heavy_check_mark: geometry/point.cpp

Verified with

Code

//source: KACTL
/**
 * Author: Ulf Lundstrom
 * Date: 2009-02-26
 * License: CC0
 * Source: My head with inspiration from tinyKACTL
 * Description: Class to handle points in the plane.
 *  T can be e.g. double or long long. (Avoid int.)
 * Status: Works fine, used a lot
 */

template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
  typedef Point P;
  T x, y;
  explicit Point(T x=0, T y=0) : x(x), y(y) {}
  bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate(double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {
    return os << "(" << p.x << "," << p.y << ")"; }
};
#line 1 "geometry/point.cpp"
//source: KACTL
/**
 * Author: Ulf Lundstrom
 * Date: 2009-02-26
 * License: CC0
 * Source: My head with inspiration from tinyKACTL
 * Description: Class to handle points in the plane.
 *  T can be e.g. double or long long. (Avoid int.)
 * Status: Works fine, used a lot
 */

template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
  typedef Point P;
  T x, y;
  explicit Point(T x=0, T y=0) : x(x), y(y) {}
  bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate(double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {
    return os << "(" << p.x << "," << p.y << ")"; }
};
Back to top page