CP-templates

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Misuki743/CP-templates

:heavy_check_mark: poly/FPS.cpp

Verified with

Code

//#include "modint/MontgomeryModInt.cpp"
//#include "poly/NTTmint.cpp"

//lagrange inversion formula:
//  let f(x) be composition inverse of g(x) (i.e. f(g(x)) = x) and [x^0]f(x) = [x^0]g(x) = 0, [x^1]f(x) != 0, [x^1]g(x) != 0, then
//  [x^n]g(x)^k = k/n [x^{n - k}] (x / f(x))^n
//  [x^n]g(x) = 1/n [x^{n - 1}] (x / f(x))^n (for k = 1)

template<class Mint>
struct FPS : vector<Mint> {

  static function<void(vector<Mint>&, bool)> dft;
  static function<vector<Mint>(vector<Mint>, vector<Mint>)> conv;

  FPS(vector<Mint> v) : vector<Mint>(v) {}

  using vector<Mint>::vector;
  FPS& operator+=(FPS b) {
    if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
    for(int i = 0; i < ssize(b); i++)
      (*this)[i] += b[i];
    return *this;
  }

  FPS& operator-=(FPS b) {
    if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
    for(int i = 0; i < ssize(b); i++)
      (*this)[i] -= b[i];
    return *this;
  }

  FPS& operator*=(FPS b) {
    auto c = conv(*this, b);
    this -> resize(ssize(*this) + ssize(b) - 1);
    copy(c.begin(), c.end(), this -> begin());
    return *this;
  }

  FPS& operator*=(Mint b) {
    for(int i = 0; i < ssize(*this); i++)
      (*this)[i] *= b;
    return *this;
  }

  FPS& operator/=(Mint b) {
    b = Mint(1) / b;
    for(int i = 0; i < ssize(*this); i++)
      (*this)[i] *= b;
    return *this;
  }

  FPS& operator<<=(int x) {
    this -> resize(ssize(*this) + x, Mint(0));
    ranges::rotate(*this, this -> end() - x);
    return *this;
  }

  FPS& operator>>=(int x) {
    if (x >= ssize(*this)) {
      this -> resize(1);
      (*this)[0] = 0;
    } else {
      ranges::rotate(*this, this -> begin() + x);
      this -> resize(ssize(*this) - x);
    }
    return *this;
  }

  FPS shrink() {
    FPS F = *this;
    int size = ssize(F);
    while(size and F[size - 1] == 0) size -= 1;
    F.resize(size);
    return F;
  }

  FPS integral() {
    if (this -> empty()) return {0};
    vector<Mint> Inv(ssize(*this) + 1);
    Inv[1] = 1;
    for(int i = 2; i < ssize(Inv); i++)
      Inv[i] = (Mint::get_mod() - Mint::get_mod() / i) * Inv[Mint::get_mod() % i];
    FPS Q(ssize(*this) + 1, 0);
    for(int i = 0; i < ssize(*this); i++)
      Q[i + 1] = (*this)[i] * Inv[i + 1];
    return Q;
  }

  FPS derivative() {
    assert(!this -> empty());
    FPS Q(ssize(*this) - 1);
    for(int i = 1; i < ssize(*this); i++)
      Q[i - 1] = (*this)[i] * i;
    return Q;
  }

  Mint eval(Mint x) {
    Mint base = 1, res = 0;
    for(int i = 0; i < ssize(*this); i++, base *= x)
      res += (*this)[i] * base;
    return res;
  }

  FPS inv(int k) { // 1 / FPS (mod x^k)
    assert(!this -> empty() and (*this)[0] != 0);
    FPS Q(1, 1 / (*this)[0]);
    for(int i = 1; (1 << (i - 1)) < k; i++) {
      FPS P = (*this);
      P.resize(1 << i, 0);
      Q = Q * (FPS(1, 2) - P * Q);
      Q.resize(1 << i, 0);
    }
    Q.resize(k);
    return Q;
  }

  array<FPS, 2> div(FPS G) {
    FPS F = this -> shrink();
    G = G.shrink();
    assert(!G.empty());
    if (ssize(G) > ssize(F))
      return {{{}, F}};
    int n = ssize(F) - ssize(G) + 1;
    auto FR = F, GR = G;
    ranges::reverse(FR);
    ranges::reverse(GR);
    FPS Q = FR * GR.inv(n);
    Q.resize(n);
    ranges::reverse(Q);
    return {Q, (F - G * Q).shrink()};
  }

  FPS log(int k) {
    assert(!this -> empty() and (*this)[0] == 1);
    FPS Q = *this;
    Q = (Q.derivative() * Q.inv(k));
    Q.resize(k - 1);
    return Q.integral();
  }

  FPS exp(int k) {
    assert(!this -> empty() and (*this)[0] == 0);
    FPS Q(1, 1);
    for(int i = 1; (1 << (i - 1)) < k; i++) {
      FPS P = (*this);
      P.resize(1 << i, 0);
      Q = Q * (FPS(1, 1) + P - Q.log(1 << i));
      Q.resize(1 << i, 0);
    }
    Q.resize(k);
    return Q;
  }

  FPS pow(ll idx, int k) {
    if (idx == 0) {
      FPS res(k, 0);
      res[0] = 1;
      return res;
    }
    for(int i = 0; i < ssize(*this) and i * idx < k; i++) {
      if ((*this)[i] != 0) {
        Mint Inv = 1 / (*this)[i];
        FPS Q(ssize(*this) - i);
        for(int j = i; j < ssize(*this); j++)
          Q[j - i] = (*this)[j] * Inv;
        Q = (Q.log(k) * idx).exp(k);
        FPS Q2(k, 0);
        Mint Pow = (*this)[i].pow(idx);
        for(int j = 0; j + i * idx < k; j++)
          Q2[j + i * idx] = Q[j] * Pow;
        return Q2;
      }
    } 
    return FPS(k, 0);
  }

  FPS pow(ll idx) {
    int mxDeg = (ssize(*this) - 1) * idx;
    FPS a = (*this);
    a.resize(bit_ceil((unsigned)(mxDeg + 1)));
    dft(a, false);
    for(Mint &x : a) x = x.pow(idx);
    dft(a, true);
    return FPS(a.begin(), a.begin() + mxDeg + 1);
  }

  vector<Mint> multieval(vector<Mint> xs) {
    int n = ssize(xs);
    vector<FPS> data(2 * n);
    for(int i = 0; i < n; i++)
      data[n + i] = {-xs[i], 1};
    for(int i = n - 1; i > 0; i--)
      data[i] = data[i << 1] * data[i << 1 | 1];
    data[1] = (this -> div(data[1]))[1];
    for(int i = 1; i < n; i++) {
      data[i << 1] = data[i].div(data[i << 1])[1];
      data[i << 1 | 1] = data[i].div(data[i << 1 | 1])[1];
    }
    vector<Mint> res(n);
    for(int i = 0; i < n; i++)
      res[i] = data[n + i].empty() ? 0 : data[n + i][0];
    return res;
  }

  static vector<Mint> interpolate(vector<Mint> xs, vector<Mint> ys) {
    assert(ssize(xs) == ssize(ys));
    int n = ssize(xs);
    vector<FPS> data(2 * n), res(2 * n);
    for(int i = 0; i < n; i++)
      data[n + i] = {-xs[i], 1};
    for(int i = n - 1; i > 0; i--)
      data[i] = data[i << 1] * data[i << 1 | 1];
    res[1] = data[1].derivative().div(data[1])[1];
    for(int i = 1; i < n; i++) {
      res[i << 1] = res[i].div(data[i << 1])[1];
      res[i << 1 | 1] = res[i].div(data[i << 1 | 1])[1];
    }
    for(int i = 0; i < n; i++)
      res[n + i][0] = ys[i] / res[n + i][0];
    for(int i = n - 1; i > 0; i--)
      res[i] = res[i << 1] * data[i << 1 | 1] + res[i << 1 | 1] * data[i << 1];
    return res[1];
  }

  static FPS allProd(vector<FPS> &fs) {
    if (fs.empty()) return {1};
    auto dfs = [&](int l, int r, auto &self) -> FPS {
      if (l + 1 == r)
        return fs[l];
      else
        return self(l, (l + r) / 2, self) * self((l + r) / 2, r, self);
    };
    return dfs(0, ssize(fs), dfs);
  }

  static array<FPS, 2> fracSum(vector<array<FPS, 2>> &fs) {
    if (fs.empty()) return {FPS{1}, {1}};
    auto dfs = [&](int l, int r, auto &self) -> array<FPS, 2> {
      if (l + 1 == r)
        return fs[l];
      int mid = (l + r) / 2;
      auto L = self(l, mid, self), R = self(mid, r, self);
      return {FPS{L[0] * R[1] + L[1] * R[0]}, {L[1] * R[1]}};
    };
    return dfs(0, ssize(fs), dfs);
  }

  friend FPS operator+(FPS a, FPS b) { return a += b; }
  friend FPS operator-(FPS a, FPS b) { return a -= b; }
  friend FPS operator*(FPS a, FPS b) { return a *= b; }
  friend FPS operator*(FPS a, Mint b) { return a *= b; }
  friend FPS operator/(FPS a, Mint b) { return a /= b; }
  friend FPS operator<<(FPS a, int x) { return a <<= x; }
  friend FPS operator>>(FPS a, int x) { return a >>= x; }
};

NTT ntt;
using fps = FPS<mint>;
template<>
function<vector<mint>(vector<mint>, vector<mint>)> fps::conv = ntt.conv;
template<>
function<void(vector<mint>&, bool)> fps::dft = ntt.ntt;
#line 1 "poly/FPS.cpp"
//#include "modint/MontgomeryModInt.cpp"
//#include "poly/NTTmint.cpp"

//lagrange inversion formula:
//  let f(x) be composition inverse of g(x) (i.e. f(g(x)) = x) and [x^0]f(x) = [x^0]g(x) = 0, [x^1]f(x) != 0, [x^1]g(x) != 0, then
//  [x^n]g(x)^k = k/n [x^{n - k}] (x / f(x))^n
//  [x^n]g(x) = 1/n [x^{n - 1}] (x / f(x))^n (for k = 1)

template<class Mint>
struct FPS : vector<Mint> {

  static function<void(vector<Mint>&, bool)> dft;
  static function<vector<Mint>(vector<Mint>, vector<Mint>)> conv;

  FPS(vector<Mint> v) : vector<Mint>(v) {}

  using vector<Mint>::vector;
  FPS& operator+=(FPS b) {
    if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
    for(int i = 0; i < ssize(b); i++)
      (*this)[i] += b[i];
    return *this;
  }

  FPS& operator-=(FPS b) {
    if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
    for(int i = 0; i < ssize(b); i++)
      (*this)[i] -= b[i];
    return *this;
  }

  FPS& operator*=(FPS b) {
    auto c = conv(*this, b);
    this -> resize(ssize(*this) + ssize(b) - 1);
    copy(c.begin(), c.end(), this -> begin());
    return *this;
  }

  FPS& operator*=(Mint b) {
    for(int i = 0; i < ssize(*this); i++)
      (*this)[i] *= b;
    return *this;
  }

  FPS& operator/=(Mint b) {
    b = Mint(1) / b;
    for(int i = 0; i < ssize(*this); i++)
      (*this)[i] *= b;
    return *this;
  }

  FPS& operator<<=(int x) {
    this -> resize(ssize(*this) + x, Mint(0));
    ranges::rotate(*this, this -> end() - x);
    return *this;
  }

  FPS& operator>>=(int x) {
    if (x >= ssize(*this)) {
      this -> resize(1);
      (*this)[0] = 0;
    } else {
      ranges::rotate(*this, this -> begin() + x);
      this -> resize(ssize(*this) - x);
    }
    return *this;
  }

  FPS shrink() {
    FPS F = *this;
    int size = ssize(F);
    while(size and F[size - 1] == 0) size -= 1;
    F.resize(size);
    return F;
  }

  FPS integral() {
    if (this -> empty()) return {0};
    vector<Mint> Inv(ssize(*this) + 1);
    Inv[1] = 1;
    for(int i = 2; i < ssize(Inv); i++)
      Inv[i] = (Mint::get_mod() - Mint::get_mod() / i) * Inv[Mint::get_mod() % i];
    FPS Q(ssize(*this) + 1, 0);
    for(int i = 0; i < ssize(*this); i++)
      Q[i + 1] = (*this)[i] * Inv[i + 1];
    return Q;
  }

  FPS derivative() {
    assert(!this -> empty());
    FPS Q(ssize(*this) - 1);
    for(int i = 1; i < ssize(*this); i++)
      Q[i - 1] = (*this)[i] * i;
    return Q;
  }

  Mint eval(Mint x) {
    Mint base = 1, res = 0;
    for(int i = 0; i < ssize(*this); i++, base *= x)
      res += (*this)[i] * base;
    return res;
  }

  FPS inv(int k) { // 1 / FPS (mod x^k)
    assert(!this -> empty() and (*this)[0] != 0);
    FPS Q(1, 1 / (*this)[0]);
    for(int i = 1; (1 << (i - 1)) < k; i++) {
      FPS P = (*this);
      P.resize(1 << i, 0);
      Q = Q * (FPS(1, 2) - P * Q);
      Q.resize(1 << i, 0);
    }
    Q.resize(k);
    return Q;
  }

  array<FPS, 2> div(FPS G) {
    FPS F = this -> shrink();
    G = G.shrink();
    assert(!G.empty());
    if (ssize(G) > ssize(F))
      return {{{}, F}};
    int n = ssize(F) - ssize(G) + 1;
    auto FR = F, GR = G;
    ranges::reverse(FR);
    ranges::reverse(GR);
    FPS Q = FR * GR.inv(n);
    Q.resize(n);
    ranges::reverse(Q);
    return {Q, (F - G * Q).shrink()};
  }

  FPS log(int k) {
    assert(!this -> empty() and (*this)[0] == 1);
    FPS Q = *this;
    Q = (Q.derivative() * Q.inv(k));
    Q.resize(k - 1);
    return Q.integral();
  }

  FPS exp(int k) {
    assert(!this -> empty() and (*this)[0] == 0);
    FPS Q(1, 1);
    for(int i = 1; (1 << (i - 1)) < k; i++) {
      FPS P = (*this);
      P.resize(1 << i, 0);
      Q = Q * (FPS(1, 1) + P - Q.log(1 << i));
      Q.resize(1 << i, 0);
    }
    Q.resize(k);
    return Q;
  }

  FPS pow(ll idx, int k) {
    if (idx == 0) {
      FPS res(k, 0);
      res[0] = 1;
      return res;
    }
    for(int i = 0; i < ssize(*this) and i * idx < k; i++) {
      if ((*this)[i] != 0) {
        Mint Inv = 1 / (*this)[i];
        FPS Q(ssize(*this) - i);
        for(int j = i; j < ssize(*this); j++)
          Q[j - i] = (*this)[j] * Inv;
        Q = (Q.log(k) * idx).exp(k);
        FPS Q2(k, 0);
        Mint Pow = (*this)[i].pow(idx);
        for(int j = 0; j + i * idx < k; j++)
          Q2[j + i * idx] = Q[j] * Pow;
        return Q2;
      }
    } 
    return FPS(k, 0);
  }

  FPS pow(ll idx) {
    int mxDeg = (ssize(*this) - 1) * idx;
    FPS a = (*this);
    a.resize(bit_ceil((unsigned)(mxDeg + 1)));
    dft(a, false);
    for(Mint &x : a) x = x.pow(idx);
    dft(a, true);
    return FPS(a.begin(), a.begin() + mxDeg + 1);
  }

  vector<Mint> multieval(vector<Mint> xs) {
    int n = ssize(xs);
    vector<FPS> data(2 * n);
    for(int i = 0; i < n; i++)
      data[n + i] = {-xs[i], 1};
    for(int i = n - 1; i > 0; i--)
      data[i] = data[i << 1] * data[i << 1 | 1];
    data[1] = (this -> div(data[1]))[1];
    for(int i = 1; i < n; i++) {
      data[i << 1] = data[i].div(data[i << 1])[1];
      data[i << 1 | 1] = data[i].div(data[i << 1 | 1])[1];
    }
    vector<Mint> res(n);
    for(int i = 0; i < n; i++)
      res[i] = data[n + i].empty() ? 0 : data[n + i][0];
    return res;
  }

  static vector<Mint> interpolate(vector<Mint> xs, vector<Mint> ys) {
    assert(ssize(xs) == ssize(ys));
    int n = ssize(xs);
    vector<FPS> data(2 * n), res(2 * n);
    for(int i = 0; i < n; i++)
      data[n + i] = {-xs[i], 1};
    for(int i = n - 1; i > 0; i--)
      data[i] = data[i << 1] * data[i << 1 | 1];
    res[1] = data[1].derivative().div(data[1])[1];
    for(int i = 1; i < n; i++) {
      res[i << 1] = res[i].div(data[i << 1])[1];
      res[i << 1 | 1] = res[i].div(data[i << 1 | 1])[1];
    }
    for(int i = 0; i < n; i++)
      res[n + i][0] = ys[i] / res[n + i][0];
    for(int i = n - 1; i > 0; i--)
      res[i] = res[i << 1] * data[i << 1 | 1] + res[i << 1 | 1] * data[i << 1];
    return res[1];
  }

  static FPS allProd(vector<FPS> &fs) {
    if (fs.empty()) return {1};
    auto dfs = [&](int l, int r, auto &self) -> FPS {
      if (l + 1 == r)
        return fs[l];
      else
        return self(l, (l + r) / 2, self) * self((l + r) / 2, r, self);
    };
    return dfs(0, ssize(fs), dfs);
  }

  static array<FPS, 2> fracSum(vector<array<FPS, 2>> &fs) {
    if (fs.empty()) return {FPS{1}, {1}};
    auto dfs = [&](int l, int r, auto &self) -> array<FPS, 2> {
      if (l + 1 == r)
        return fs[l];
      int mid = (l + r) / 2;
      auto L = self(l, mid, self), R = self(mid, r, self);
      return {FPS{L[0] * R[1] + L[1] * R[0]}, {L[1] * R[1]}};
    };
    return dfs(0, ssize(fs), dfs);
  }

  friend FPS operator+(FPS a, FPS b) { return a += b; }
  friend FPS operator-(FPS a, FPS b) { return a -= b; }
  friend FPS operator*(FPS a, FPS b) { return a *= b; }
  friend FPS operator*(FPS a, Mint b) { return a *= b; }
  friend FPS operator/(FPS a, Mint b) { return a /= b; }
  friend FPS operator<<(FPS a, int x) { return a <<= x; }
  friend FPS operator>>(FPS a, int x) { return a >>= x; }
};

NTT ntt;
using fps = FPS<mint>;
template<>
function<vector<mint>(vector<mint>, vector<mint>)> fps::conv = ntt.conv;
template<>
function<void(vector<mint>&, bool)> fps::dft = ntt.ntt;
Back to top page