This documentation is automatically generated by online-judge-tools/verification-helper
//#include "modint/MontgomeryModInt.cpp"
//#include "poly/NTTmint.cpp"
//lagrange inversion formula:
// let f(x) be composition inverse of g(x) (i.e. f(g(x)) = x) and [x^0]f(x) = [x^0]g(x) = 0, [x^1]f(x) != 0, [x^1]g(x) != 0, then
// [x^n]g(x)^k = k/n [x^{n - k}] (x / f(x))^n
// [x^n]g(x) = 1/n [x^{n - 1}] (x / f(x))^n (for k = 1)
template<class Mint>
struct FPS : vector<Mint> {
static function<void(vector<Mint>&, bool)> dft;
static function<vector<Mint>(vector<Mint>, vector<Mint>)> conv;
FPS(vector<Mint> v) : vector<Mint>(v) {}
using vector<Mint>::vector;
FPS& operator+=(FPS b) {
if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
for(int i = 0; i < ssize(b); i++)
(*this)[i] += b[i];
return *this;
}
FPS& operator-=(FPS b) {
if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
for(int i = 0; i < ssize(b); i++)
(*this)[i] -= b[i];
return *this;
}
FPS& operator*=(FPS b) {
auto c = conv(*this, b);
this -> resize(ssize(*this) + ssize(b) - 1);
copy(c.begin(), c.end(), this -> begin());
return *this;
}
FPS& operator*=(Mint b) {
for(int i = 0; i < ssize(*this); i++)
(*this)[i] *= b;
return *this;
}
FPS& operator/=(Mint b) {
b = Mint(1) / b;
for(int i = 0; i < ssize(*this); i++)
(*this)[i] *= b;
return *this;
}
FPS& operator<<=(int x) {
this -> resize(ssize(*this) + x, Mint(0));
ranges::rotate(*this, this -> end() - x);
return *this;
}
FPS& operator>>=(int x) {
if (x >= ssize(*this)) {
this -> resize(1);
(*this)[0] = 0;
} else {
ranges::rotate(*this, this -> begin() + x);
this -> resize(ssize(*this) - x);
}
return *this;
}
FPS shrink() {
FPS F = *this;
int size = ssize(F);
while(size and F[size - 1] == 0) size -= 1;
F.resize(size);
return F;
}
FPS integral() {
if (this -> empty()) return {0};
vector<Mint> Inv(ssize(*this) + 1);
Inv[1] = 1;
for(int i = 2; i < ssize(Inv); i++)
Inv[i] = (Mint::get_mod() - Mint::get_mod() / i) * Inv[Mint::get_mod() % i];
FPS Q(ssize(*this) + 1, 0);
for(int i = 0; i < ssize(*this); i++)
Q[i + 1] = (*this)[i] * Inv[i + 1];
return Q;
}
FPS derivative() {
assert(!this -> empty());
FPS Q(ssize(*this) - 1);
for(int i = 1; i < ssize(*this); i++)
Q[i - 1] = (*this)[i] * i;
return Q;
}
Mint eval(Mint x) {
Mint base = 1, res = 0;
for(int i = 0; i < ssize(*this); i++, base *= x)
res += (*this)[i] * base;
return res;
}
FPS inv(int k) { // 1 / FPS (mod x^k)
assert(!this -> empty() and (*this)[0] != 0);
FPS Q(1, 1 / (*this)[0]);
for(int i = 1; (1 << (i - 1)) < k; i++) {
FPS P = (*this);
P.resize(1 << i, 0);
Q = Q * (FPS(1, 2) - P * Q);
Q.resize(1 << i, 0);
}
Q.resize(k);
return Q;
}
array<FPS, 2> div(FPS G) {
FPS F = this -> shrink();
G = G.shrink();
assert(!G.empty());
if (ssize(G) > ssize(F))
return {{{}, F}};
int n = ssize(F) - ssize(G) + 1;
auto FR = F, GR = G;
ranges::reverse(FR);
ranges::reverse(GR);
FPS Q = FR * GR.inv(n);
Q.resize(n);
ranges::reverse(Q);
return {Q, (F - G * Q).shrink()};
}
FPS log(int k) {
assert(!this -> empty() and (*this)[0] == 1);
FPS Q = *this;
Q = (Q.derivative() * Q.inv(k));
Q.resize(k - 1);
return Q.integral();
}
FPS exp(int k) {
assert(!this -> empty() and (*this)[0] == 0);
FPS Q(1, 1);
for(int i = 1; (1 << (i - 1)) < k; i++) {
FPS P = (*this);
P.resize(1 << i, 0);
Q = Q * (FPS(1, 1) + P - Q.log(1 << i));
Q.resize(1 << i, 0);
}
Q.resize(k);
return Q;
}
FPS pow(ll idx, int k) {
if (idx == 0) {
FPS res(k, 0);
res[0] = 1;
return res;
}
for(int i = 0; i < ssize(*this) and i * idx < k; i++) {
if ((*this)[i] != 0) {
Mint Inv = 1 / (*this)[i];
FPS Q(ssize(*this) - i);
for(int j = i; j < ssize(*this); j++)
Q[j - i] = (*this)[j] * Inv;
Q = (Q.log(k) * idx).exp(k);
FPS Q2(k, 0);
Mint Pow = (*this)[i].pow(idx);
for(int j = 0; j + i * idx < k; j++)
Q2[j + i * idx] = Q[j] * Pow;
return Q2;
}
}
return FPS(k, 0);
}
FPS pow(ll idx) {
int mxDeg = (ssize(*this) - 1) * idx;
FPS a = (*this);
a.resize(bit_ceil((unsigned)(mxDeg + 1)));
dft(a, false);
for(Mint &x : a) x = x.pow(idx);
dft(a, true);
return FPS(a.begin(), a.begin() + mxDeg + 1);
}
vector<Mint> multieval(vector<Mint> xs) {
int n = ssize(xs);
vector<FPS> data(2 * n);
for(int i = 0; i < n; i++)
data[n + i] = {-xs[i], 1};
for(int i = n - 1; i > 0; i--)
data[i] = data[i << 1] * data[i << 1 | 1];
data[1] = (this -> div(data[1]))[1];
for(int i = 1; i < n; i++) {
data[i << 1] = data[i].div(data[i << 1])[1];
data[i << 1 | 1] = data[i].div(data[i << 1 | 1])[1];
}
vector<Mint> res(n);
for(int i = 0; i < n; i++)
res[i] = data[n + i].empty() ? 0 : data[n + i][0];
return res;
}
static vector<Mint> interpolate(vector<Mint> xs, vector<Mint> ys) {
assert(ssize(xs) == ssize(ys));
int n = ssize(xs);
vector<FPS> data(2 * n), res(2 * n);
for(int i = 0; i < n; i++)
data[n + i] = {-xs[i], 1};
for(int i = n - 1; i > 0; i--)
data[i] = data[i << 1] * data[i << 1 | 1];
res[1] = data[1].derivative().div(data[1])[1];
for(int i = 1; i < n; i++) {
res[i << 1] = res[i].div(data[i << 1])[1];
res[i << 1 | 1] = res[i].div(data[i << 1 | 1])[1];
}
for(int i = 0; i < n; i++)
res[n + i][0] = ys[i] / res[n + i][0];
for(int i = n - 1; i > 0; i--)
res[i] = res[i << 1] * data[i << 1 | 1] + res[i << 1 | 1] * data[i << 1];
return res[1];
}
static FPS allProd(vector<FPS> &fs) {
if (fs.empty()) return {1};
auto dfs = [&](int l, int r, auto &self) -> FPS {
if (l + 1 == r)
return fs[l];
else
return self(l, (l + r) / 2, self) * self((l + r) / 2, r, self);
};
return dfs(0, ssize(fs), dfs);
}
static array<FPS, 2> fracSum(vector<array<FPS, 2>> &fs) {
if (fs.empty()) return {FPS{1}, {1}};
auto dfs = [&](int l, int r, auto &self) -> array<FPS, 2> {
if (l + 1 == r)
return fs[l];
int mid = (l + r) / 2;
auto L = self(l, mid, self), R = self(mid, r, self);
return {FPS{L[0] * R[1] + L[1] * R[0]}, {L[1] * R[1]}};
};
return dfs(0, ssize(fs), dfs);
}
friend FPS operator+(FPS a, FPS b) { return a += b; }
friend FPS operator-(FPS a, FPS b) { return a -= b; }
friend FPS operator*(FPS a, FPS b) { return a *= b; }
friend FPS operator*(FPS a, Mint b) { return a *= b; }
friend FPS operator/(FPS a, Mint b) { return a /= b; }
friend FPS operator<<(FPS a, int x) { return a <<= x; }
friend FPS operator>>(FPS a, int x) { return a >>= x; }
};
NTT ntt;
using fps = FPS<mint>;
template<>
function<vector<mint>(vector<mint>, vector<mint>)> fps::conv = ntt.conv;
template<>
function<void(vector<mint>&, bool)> fps::dft = ntt.ntt;
#line 1 "poly/FPS.cpp"
//#include "modint/MontgomeryModInt.cpp"
//#include "poly/NTTmint.cpp"
//lagrange inversion formula:
// let f(x) be composition inverse of g(x) (i.e. f(g(x)) = x) and [x^0]f(x) = [x^0]g(x) = 0, [x^1]f(x) != 0, [x^1]g(x) != 0, then
// [x^n]g(x)^k = k/n [x^{n - k}] (x / f(x))^n
// [x^n]g(x) = 1/n [x^{n - 1}] (x / f(x))^n (for k = 1)
template<class Mint>
struct FPS : vector<Mint> {
static function<void(vector<Mint>&, bool)> dft;
static function<vector<Mint>(vector<Mint>, vector<Mint>)> conv;
FPS(vector<Mint> v) : vector<Mint>(v) {}
using vector<Mint>::vector;
FPS& operator+=(FPS b) {
if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
for(int i = 0; i < ssize(b); i++)
(*this)[i] += b[i];
return *this;
}
FPS& operator-=(FPS b) {
if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
for(int i = 0; i < ssize(b); i++)
(*this)[i] -= b[i];
return *this;
}
FPS& operator*=(FPS b) {
auto c = conv(*this, b);
this -> resize(ssize(*this) + ssize(b) - 1);
copy(c.begin(), c.end(), this -> begin());
return *this;
}
FPS& operator*=(Mint b) {
for(int i = 0; i < ssize(*this); i++)
(*this)[i] *= b;
return *this;
}
FPS& operator/=(Mint b) {
b = Mint(1) / b;
for(int i = 0; i < ssize(*this); i++)
(*this)[i] *= b;
return *this;
}
FPS& operator<<=(int x) {
this -> resize(ssize(*this) + x, Mint(0));
ranges::rotate(*this, this -> end() - x);
return *this;
}
FPS& operator>>=(int x) {
if (x >= ssize(*this)) {
this -> resize(1);
(*this)[0] = 0;
} else {
ranges::rotate(*this, this -> begin() + x);
this -> resize(ssize(*this) - x);
}
return *this;
}
FPS shrink() {
FPS F = *this;
int size = ssize(F);
while(size and F[size - 1] == 0) size -= 1;
F.resize(size);
return F;
}
FPS integral() {
if (this -> empty()) return {0};
vector<Mint> Inv(ssize(*this) + 1);
Inv[1] = 1;
for(int i = 2; i < ssize(Inv); i++)
Inv[i] = (Mint::get_mod() - Mint::get_mod() / i) * Inv[Mint::get_mod() % i];
FPS Q(ssize(*this) + 1, 0);
for(int i = 0; i < ssize(*this); i++)
Q[i + 1] = (*this)[i] * Inv[i + 1];
return Q;
}
FPS derivative() {
assert(!this -> empty());
FPS Q(ssize(*this) - 1);
for(int i = 1; i < ssize(*this); i++)
Q[i - 1] = (*this)[i] * i;
return Q;
}
Mint eval(Mint x) {
Mint base = 1, res = 0;
for(int i = 0; i < ssize(*this); i++, base *= x)
res += (*this)[i] * base;
return res;
}
FPS inv(int k) { // 1 / FPS (mod x^k)
assert(!this -> empty() and (*this)[0] != 0);
FPS Q(1, 1 / (*this)[0]);
for(int i = 1; (1 << (i - 1)) < k; i++) {
FPS P = (*this);
P.resize(1 << i, 0);
Q = Q * (FPS(1, 2) - P * Q);
Q.resize(1 << i, 0);
}
Q.resize(k);
return Q;
}
array<FPS, 2> div(FPS G) {
FPS F = this -> shrink();
G = G.shrink();
assert(!G.empty());
if (ssize(G) > ssize(F))
return {{{}, F}};
int n = ssize(F) - ssize(G) + 1;
auto FR = F, GR = G;
ranges::reverse(FR);
ranges::reverse(GR);
FPS Q = FR * GR.inv(n);
Q.resize(n);
ranges::reverse(Q);
return {Q, (F - G * Q).shrink()};
}
FPS log(int k) {
assert(!this -> empty() and (*this)[0] == 1);
FPS Q = *this;
Q = (Q.derivative() * Q.inv(k));
Q.resize(k - 1);
return Q.integral();
}
FPS exp(int k) {
assert(!this -> empty() and (*this)[0] == 0);
FPS Q(1, 1);
for(int i = 1; (1 << (i - 1)) < k; i++) {
FPS P = (*this);
P.resize(1 << i, 0);
Q = Q * (FPS(1, 1) + P - Q.log(1 << i));
Q.resize(1 << i, 0);
}
Q.resize(k);
return Q;
}
FPS pow(ll idx, int k) {
if (idx == 0) {
FPS res(k, 0);
res[0] = 1;
return res;
}
for(int i = 0; i < ssize(*this) and i * idx < k; i++) {
if ((*this)[i] != 0) {
Mint Inv = 1 / (*this)[i];
FPS Q(ssize(*this) - i);
for(int j = i; j < ssize(*this); j++)
Q[j - i] = (*this)[j] * Inv;
Q = (Q.log(k) * idx).exp(k);
FPS Q2(k, 0);
Mint Pow = (*this)[i].pow(idx);
for(int j = 0; j + i * idx < k; j++)
Q2[j + i * idx] = Q[j] * Pow;
return Q2;
}
}
return FPS(k, 0);
}
FPS pow(ll idx) {
int mxDeg = (ssize(*this) - 1) * idx;
FPS a = (*this);
a.resize(bit_ceil((unsigned)(mxDeg + 1)));
dft(a, false);
for(Mint &x : a) x = x.pow(idx);
dft(a, true);
return FPS(a.begin(), a.begin() + mxDeg + 1);
}
vector<Mint> multieval(vector<Mint> xs) {
int n = ssize(xs);
vector<FPS> data(2 * n);
for(int i = 0; i < n; i++)
data[n + i] = {-xs[i], 1};
for(int i = n - 1; i > 0; i--)
data[i] = data[i << 1] * data[i << 1 | 1];
data[1] = (this -> div(data[1]))[1];
for(int i = 1; i < n; i++) {
data[i << 1] = data[i].div(data[i << 1])[1];
data[i << 1 | 1] = data[i].div(data[i << 1 | 1])[1];
}
vector<Mint> res(n);
for(int i = 0; i < n; i++)
res[i] = data[n + i].empty() ? 0 : data[n + i][0];
return res;
}
static vector<Mint> interpolate(vector<Mint> xs, vector<Mint> ys) {
assert(ssize(xs) == ssize(ys));
int n = ssize(xs);
vector<FPS> data(2 * n), res(2 * n);
for(int i = 0; i < n; i++)
data[n + i] = {-xs[i], 1};
for(int i = n - 1; i > 0; i--)
data[i] = data[i << 1] * data[i << 1 | 1];
res[1] = data[1].derivative().div(data[1])[1];
for(int i = 1; i < n; i++) {
res[i << 1] = res[i].div(data[i << 1])[1];
res[i << 1 | 1] = res[i].div(data[i << 1 | 1])[1];
}
for(int i = 0; i < n; i++)
res[n + i][0] = ys[i] / res[n + i][0];
for(int i = n - 1; i > 0; i--)
res[i] = res[i << 1] * data[i << 1 | 1] + res[i << 1 | 1] * data[i << 1];
return res[1];
}
static FPS allProd(vector<FPS> &fs) {
if (fs.empty()) return {1};
auto dfs = [&](int l, int r, auto &self) -> FPS {
if (l + 1 == r)
return fs[l];
else
return self(l, (l + r) / 2, self) * self((l + r) / 2, r, self);
};
return dfs(0, ssize(fs), dfs);
}
static array<FPS, 2> fracSum(vector<array<FPS, 2>> &fs) {
if (fs.empty()) return {FPS{1}, {1}};
auto dfs = [&](int l, int r, auto &self) -> array<FPS, 2> {
if (l + 1 == r)
return fs[l];
int mid = (l + r) / 2;
auto L = self(l, mid, self), R = self(mid, r, self);
return {FPS{L[0] * R[1] + L[1] * R[0]}, {L[1] * R[1]}};
};
return dfs(0, ssize(fs), dfs);
}
friend FPS operator+(FPS a, FPS b) { return a += b; }
friend FPS operator-(FPS a, FPS b) { return a -= b; }
friend FPS operator*(FPS a, FPS b) { return a *= b; }
friend FPS operator*(FPS a, Mint b) { return a *= b; }
friend FPS operator/(FPS a, Mint b) { return a /= b; }
friend FPS operator<<(FPS a, int x) { return a <<= x; }
friend FPS operator>>(FPS a, int x) { return a >>= x; }
};
NTT ntt;
using fps = FPS<mint>;
template<>
function<vector<mint>(vector<mint>, vector<mint>)> fps::conv = ntt.conv;
template<>
function<void(vector<mint>&, bool)> fps::dft = ntt.ntt;