This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/exp_of_formal_power_series"
#include "../default/t.cpp"
#include "../modint/MontgomeryModInt.cpp"
#include "../poly/NTTmint.cpp"
#include "../poly/FPS.cpp"
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
int n; cin >> n;
fps f(n);
for(mint &x : f)
cin >> x;
cout << f.exp(n) << '\n';
return 0;
}
#line 1 "test/exp_of_formal_power_series.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/exp_of_formal_power_series"
#line 1 "default/t.cpp"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
#include <bit>
#include <compare>
#include <concepts>
#include <numbers>
#include <ranges>
#include <span>
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)
#define clock chrono::steady_clock::now().time_since_epoch().count()
using namespace std;
template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2> pr) {
return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
for(size_t i = 0; T x : arr) {
os << x;
if (++i != N) os << ' ';
}
return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
for(size_t i = 0; T x : vec) {
os << x;
if (++i != size(vec)) os << ' ';
}
return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
for(size_t i = 0; T x : s) {
os << x;
if (++i != size(s)) os << ' ';
}
return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const map<T1, T2> &m) {
for(size_t i = 0; pair<T1, T2> x : m) {
os << x;
if (++i != size(m)) os << ' ';
}
return os;
}
#ifdef DEBUG
#define dbg(...) cerr << '(', _do(#__VA_ARGS__), cerr << ") = ", _do2(__VA_ARGS__)
template<typename T> void _do(T &&x) { cerr << x; }
template<typename T, typename ...S> void _do(T &&x, S&&...y) { cerr << x << ", "; _do(y...); }
template<typename T> void _do2(T &&x) { cerr << x << endl; }
template<typename T, typename ...S> void _do2(T &&x, S&&...y) { cerr << x << ", "; _do2(y...); }
#else
#define dbg(...)
#endif
using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template<typename T> using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T> using max_heap = priority_queue<T>;
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP = plus<T>>
void pSum(rng &v) {
if (!v.empty())
for(T p = v[0]; T &x : v | views::drop(1))
x = p = OP()(p, x);
}
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, class OP>
void pSum(rng &v, OP op) {
if (!v.empty())
for(T p = v[0]; T &x : v | views::drop(1))
x = p = op(p, x);
}
template<ranges::forward_range rng>
void Unique(rng &v) {
ranges::sort(v);
v.resize(unique(v.begin(), v.end()) - v.begin());
}
template<ranges::random_access_range rng>
rng invPerm(rng p) {
rng ret = p;
for(int i = 0; i < ssize(p); i++)
ret[p[i]] = i;
return ret;
}
template<ranges::random_access_range rng, ranges::random_access_range rng2>
rng Permute(rng v, rng2 p) {
rng ret = v;
for(int i = 0; i < ssize(p); i++)
ret[p[i]] = v[i];
return ret;
}
template<bool directed>
vector<vector<int>> readGraph(int n, int m, int base) {
vector<vector<int>> g(n);
for(int i = 0; i < m; i++) {
int u, v; cin >> u >> v;
u -= base, v -= base;
g[u].emplace_back(v);
if constexpr (!directed)
g[v].emplace_back(u);
}
return g;
}
template<class T>
void setBit(T &msk, int bit, bool x) {
msk = (msk & ~(T(1) << bit)) | (T(x) << bit);
}
template<class T> void flipBit(T &msk, int bit) { msk ^= T(1) << bit; }
template<class T> bool getBit(T msk, int bit) { return msk >> bit & T(1); }
template<class T>
T floorDiv(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? a / b : (a - b + 1) / b;
}
template<class T>
T ceilDiv(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? (a + b - 1) / b : a / b;
}
template<class T> bool chmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<class T> bool chmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
#line 1 "modint/MontgomeryModInt.cpp"
//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be an odd prime less than 2^30.
template<uint32_t mod>
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 res = 1, base = mod;
for(i32 i = 0; i < 31; i++)
res *= base, base *= base;
return -res;
}
static constexpr u32 get_mod() {
return mod;
}
static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
static constexpr u32 r = get_r(); //-P^{-1} % 2^32
u32 a;
static u32 reduce(const u64 &b) {
return (b + u64(u32(b) * r) * mod) >> 32;
}
static u32 transform(const u64 &b) {
return reduce(u64(b) * n2);
}
MontgomeryModInt() : a(0) {}
MontgomeryModInt(const int64_t &b)
: a(transform(b % mod + mod)) {}
mint pow(u64 k) const {
mint res(1), base(*this);
while(k) {
if (k & 1)
res *= base;
base *= base, k >>= 1;
}
return res;
}
mint inverse() const { return (*this).pow(mod - 2); }
u32 get() const {
u32 res = reduce(a);
return res >= mod ? res - mod : res;
}
mint& operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
mint& operator/=(const mint &b) {
a = reduce(u64(a) * b.inverse().a);
return *this;
}
mint operator-() { return mint() - mint(*this); }
bool operator==(mint b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(mint b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
friend mint operator+(mint c, mint d) { return c += d; }
friend mint operator-(mint c, mint d) { return c -= d; }
friend mint operator*(mint c, mint d) { return c *= d; }
friend mint operator/(mint c, mint d) { return c /= d; }
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t val;
is >> val;
b = mint(val);
return is;
}
};
using mint = MontgomeryModInt<998244353>;
#line 1 "poly/NTTmint.cpp"
//reference: https://judge.yosupo.jp/submission/69896
//remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD
//remark: a.size() <= 2^K must be satisfied
//some common modulo: 998244353 = 2^23 * 119 + 1, R = 3
// 469762049 = 2^26 * 7 + 1, R = 3
// 1224736769 = 2^24 * 73 + 1, R = 3
template<int32_t k = 23, int32_t c = 119, int32_t r = 3, class Mint = MontgomeryModInt<998244353>>
struct NTT {
using u32 = uint32_t;
static constexpr u32 mod = (1 << k) * c + 1;
static constexpr u32 get_mod() { return mod; }
static void ntt(vector<Mint> &a, bool inverse) {
static array<Mint, 30> w, w_inv;
if (w[0] == 0) {
Mint root = 2;
while(root.pow((mod - 1) / 2) == 1) root += 1;
for(int i = 0; i < 30; i++)
w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i];
}
int n = ssize(a);
if (not inverse) {
for(int m = n; m >>= 1; ) {
Mint ww = 1;
for(int s = 0, l = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
Mint x = a[i], y = a[j] * ww;
a[i] = x + y, a[j] = x - y;
}
ww *= w[__builtin_ctz(++l)];
}
}
} else {
for(int m = 1; m < n; m *= 2) {
Mint ww = 1;
for(int s = 0, l = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
Mint x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * ww;
}
ww *= w_inv[__builtin_ctz(++l)];
}
}
Mint inv = 1 / Mint(n);
for(Mint &x : a) x *= inv;
}
}
static vector<Mint> conv(vector<Mint> a, vector<Mint> b) {
int sz = ssize(a) + ssize(b) - 1;
int n = bit_ceil((u32)sz);
a.resize(n, 0);
ntt(a, false);
b.resize(n, 0);
ntt(b, false);
for(int i = 0; i < n; i++)
a[i] *= b[i];
ntt(a, true);
a.resize(sz);
return a;
}
};
#line 1 "poly/FPS.cpp"
//#include "modint/MontgomeryModInt.cpp"
//#include "poly/NTTmint.cpp"
//lagrange inversion formula:
// let f(x) be composition inverse of g(x) (i.e. f(g(x)) = x) and [x^0]f(x) = [x^0]g(x) = 0, [x^1]f(x) != 0, [x^1]g(x) != 0, then
// [x^n]g(x)^k = k/n [x^{n - k}] (x / f(x))^n
// [x^n]g(x) = 1/n [x^{n - 1}] (x / f(x))^n (for k = 1)
template<class Mint>
struct FPS : vector<Mint> {
static function<void(vector<Mint>&, bool)> dft;
static function<vector<Mint>(vector<Mint>, vector<Mint>)> conv;
FPS(vector<Mint> v) : vector<Mint>(v) {}
using vector<Mint>::vector;
FPS& operator+=(FPS b) {
if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
for(int i = 0; i < ssize(b); i++)
(*this)[i] += b[i];
return *this;
}
FPS& operator-=(FPS b) {
if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0);
for(int i = 0; i < ssize(b); i++)
(*this)[i] -= b[i];
return *this;
}
FPS& operator*=(FPS b) {
auto c = conv(*this, b);
this -> resize(ssize(*this) + ssize(b) - 1);
copy(c.begin(), c.end(), this -> begin());
return *this;
}
FPS& operator*=(Mint b) {
for(int i = 0; i < ssize(*this); i++)
(*this)[i] *= b;
return *this;
}
FPS& operator/=(Mint b) {
b = Mint(1) / b;
for(int i = 0; i < ssize(*this); i++)
(*this)[i] *= b;
return *this;
}
FPS& operator<<=(int x) {
this -> resize(ssize(*this) + x, Mint(0));
ranges::rotate(*this, this -> end() - x);
return *this;
}
FPS& operator>>=(int x) {
if (x >= ssize(*this)) {
this -> resize(1);
(*this)[0] = 0;
} else {
ranges::rotate(*this, this -> begin() + x);
this -> resize(ssize(*this) - x);
}
return *this;
}
FPS shrink() {
FPS F = *this;
int size = ssize(F);
while(size and F[size - 1] == 0) size -= 1;
F.resize(size);
return F;
}
FPS integral() {
if (this -> empty()) return {0};
vector<Mint> Inv(ssize(*this) + 1);
Inv[1] = 1;
for(int i = 2; i < ssize(Inv); i++)
Inv[i] = (Mint::get_mod() - Mint::get_mod() / i) * Inv[Mint::get_mod() % i];
FPS Q(ssize(*this) + 1, 0);
for(int i = 0; i < ssize(*this); i++)
Q[i + 1] = (*this)[i] * Inv[i + 1];
return Q;
}
FPS derivative() {
assert(!this -> empty());
FPS Q(ssize(*this) - 1);
for(int i = 1; i < ssize(*this); i++)
Q[i - 1] = (*this)[i] * i;
return Q;
}
Mint eval(Mint x) {
Mint base = 1, res = 0;
for(int i = 0; i < ssize(*this); i++, base *= x)
res += (*this)[i] * base;
return res;
}
FPS inv(int k) { // 1 / FPS (mod x^k)
assert(!this -> empty() and (*this)[0] != 0);
FPS Q(1, 1 / (*this)[0]);
for(int i = 1; (1 << (i - 1)) < k; i++) {
FPS P = (*this);
P.resize(1 << i, 0);
Q = Q * (FPS(1, 2) - P * Q);
Q.resize(1 << i, 0);
}
Q.resize(k);
return Q;
}
array<FPS, 2> div(FPS G) {
FPS F = this -> shrink();
G = G.shrink();
assert(!G.empty());
if (ssize(G) > ssize(F))
return {{{}, F}};
int n = ssize(F) - ssize(G) + 1;
auto FR = F, GR = G;
ranges::reverse(FR);
ranges::reverse(GR);
FPS Q = FR * GR.inv(n);
Q.resize(n);
ranges::reverse(Q);
return {Q, (F - G * Q).shrink()};
}
FPS log(int k) {
assert(!this -> empty() and (*this)[0] == 1);
FPS Q = *this;
Q = (Q.derivative() * Q.inv(k));
Q.resize(k - 1);
return Q.integral();
}
FPS exp(int k) {
assert(!this -> empty() and (*this)[0] == 0);
FPS Q(1, 1);
for(int i = 1; (1 << (i - 1)) < k; i++) {
FPS P = (*this);
P.resize(1 << i, 0);
Q = Q * (FPS(1, 1) + P - Q.log(1 << i));
Q.resize(1 << i, 0);
}
Q.resize(k);
return Q;
}
FPS pow(ll idx, int k) {
if (idx == 0) {
FPS res(k, 0);
res[0] = 1;
return res;
}
for(int i = 0; i < ssize(*this) and i * idx < k; i++) {
if ((*this)[i] != 0) {
Mint Inv = 1 / (*this)[i];
FPS Q(ssize(*this) - i);
for(int j = i; j < ssize(*this); j++)
Q[j - i] = (*this)[j] * Inv;
Q = (Q.log(k) * idx).exp(k);
FPS Q2(k, 0);
Mint Pow = (*this)[i].pow(idx);
for(int j = 0; j + i * idx < k; j++)
Q2[j + i * idx] = Q[j] * Pow;
return Q2;
}
}
return FPS(k, 0);
}
FPS pow(ll idx) {
int mxDeg = (ssize(*this) - 1) * idx;
FPS a = (*this);
a.resize(bit_ceil((unsigned)(mxDeg + 1)));
dft(a, false);
for(Mint &x : a) x = x.pow(idx);
dft(a, true);
return FPS(a.begin(), a.begin() + mxDeg + 1);
}
vector<Mint> multieval(vector<Mint> xs) {
int n = ssize(xs);
vector<FPS> data(2 * n);
for(int i = 0; i < n; i++)
data[n + i] = {-xs[i], 1};
for(int i = n - 1; i > 0; i--)
data[i] = data[i << 1] * data[i << 1 | 1];
data[1] = (this -> div(data[1]))[1];
for(int i = 1; i < n; i++) {
data[i << 1] = data[i].div(data[i << 1])[1];
data[i << 1 | 1] = data[i].div(data[i << 1 | 1])[1];
}
vector<Mint> res(n);
for(int i = 0; i < n; i++)
res[i] = data[n + i].empty() ? 0 : data[n + i][0];
return res;
}
static vector<Mint> interpolate(vector<Mint> xs, vector<Mint> ys) {
assert(ssize(xs) == ssize(ys));
int n = ssize(xs);
vector<FPS> data(2 * n), res(2 * n);
for(int i = 0; i < n; i++)
data[n + i] = {-xs[i], 1};
for(int i = n - 1; i > 0; i--)
data[i] = data[i << 1] * data[i << 1 | 1];
res[1] = data[1].derivative().div(data[1])[1];
for(int i = 1; i < n; i++) {
res[i << 1] = res[i].div(data[i << 1])[1];
res[i << 1 | 1] = res[i].div(data[i << 1 | 1])[1];
}
for(int i = 0; i < n; i++)
res[n + i][0] = ys[i] / res[n + i][0];
for(int i = n - 1; i > 0; i--)
res[i] = res[i << 1] * data[i << 1 | 1] + res[i << 1 | 1] * data[i << 1];
return res[1];
}
static FPS allProd(vector<FPS> &fs) {
if (fs.empty()) return {1};
auto dfs = [&](int l, int r, auto &self) -> FPS {
if (l + 1 == r)
return fs[l];
else
return self(l, (l + r) / 2, self) * self((l + r) / 2, r, self);
};
return dfs(0, ssize(fs), dfs);
}
static array<FPS, 2> fracSum(vector<array<FPS, 2>> &fs) {
if (fs.empty()) return {FPS{1}, {1}};
auto dfs = [&](int l, int r, auto &self) -> array<FPS, 2> {
if (l + 1 == r)
return fs[l];
int mid = (l + r) / 2;
auto L = self(l, mid, self), R = self(mid, r, self);
return {FPS{L[0] * R[1] + L[1] * R[0]}, {L[1] * R[1]}};
};
return dfs(0, ssize(fs), dfs);
}
friend FPS operator+(FPS a, FPS b) { return a += b; }
friend FPS operator-(FPS a, FPS b) { return a -= b; }
friend FPS operator*(FPS a, FPS b) { return a *= b; }
friend FPS operator*(FPS a, Mint b) { return a *= b; }
friend FPS operator/(FPS a, Mint b) { return a /= b; }
friend FPS operator<<(FPS a, int x) { return a <<= x; }
friend FPS operator>>(FPS a, int x) { return a >>= x; }
};
NTT ntt;
using fps = FPS<mint>;
template<>
function<vector<mint>(vector<mint>, vector<mint>)> fps::conv = ntt.conv;
template<>
function<void(vector<mint>&, bool)> fps::dft = ntt.ntt;
#line 7 "test/exp_of_formal_power_series.test.cpp"
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
int n; cin >> n;
fps f(n);
for(mint &x : f)
cin >> x;
cout << f.exp(n) << '\n';
return 0;
}